Arnaud Castel
Centre for Infrastructure Engineering and Safety
School of Civil and Environmental Engineering
The University of New South Wales, Australia
Title: Performance based specifications for geopolymer concrete in chloride environment
Biography
Biography: Arnaud Castel
Abstract
Geopolymer concrete (GC) is the result of the reaction of materials containing aluminosilicate such as fly ash and Ground Granulated Blast Furnace Slag with alkalis to produce an inorganic polymer binder. GC is Portland cement free low embodied carbon concrete. GC has been under intensive research around the world during the last 15 years. The major barriers to GC widespread adoption by the construction industry are concerns about durability and exclusion from current standards. Chemical reactions characterising alkali-activated binder systems differ drastically from conventional hydration process of Portland cement. Thus, the mechanisms by which concrete achieves potential durability are different between the two types of binders. As a result, testing methods and performance based requirements for geopolymer must be developed to be incorporated in a performance base standard. Testing methods presented will be looking at the risk of alkali leaching and efflorescence, passivity of reinforcement and chloride induced steel reinforcement corrosion in GC concrete.